Evaluating the Conservation and Agricultural Applications of American Kestrel Nest Boxes in a Fruit-growing Region

Coupled Human and Natural System Overview Habitat Natural System: Human System: enhancement **Fruit Production** Predation Predator Consumers Prey ≁ (crop pest) Growers Production Plant (fruit tree) Crop & tree damage reduction

Coupled Human and Natural System Overview

American Kestrel

(Falco sparverius)

Human System: Fruit Production

Prunus spp.

Crop & tree damage reduction

(e.g. Kross et al. 2012)

Cherry Orchard Nest Boxes in Michigan

Project Overview

- Part 1: Conservation
- Reproductive rates
- Kestrel presence in region

Part 2: Agriculture

- Quantifying prey removal
- Effects on prey abundances

Conservation: Reproductive rates of kestrels using orchard nest boxes

Monitoring Nest Boxes

Kestrels Show High Reproductive Rates

Table 1. Nesting attempts, apparent nesting success, and mean productivity (number of fledglings per box with nesting attempts) for new nest boxes in Michigan cherry orchards in 2013–2015.

YEAR	BOXES AVAILABLE	% BOXES WITH NESTING ATTEMPTS	NESTING ATTEMPTS INITIATED	% NESTING SUCCESS	Mean Productivity
2013	8	100	8	100	4.25
2014	18	83	16	88	3.87
2015	18	100	19	89	3.56
Total	44	93	43	91	3.80

Table 2. Reproductive rates of kestrels using new nest boxes in Michigan cherry orchards, 2013–2015.

YEAR	Mean Clutch Size \pm SE	Mean Hatchlings ± SE	% Hatched	Mean Fledglings ± SE	% Hatchlings Fledged
2013	4.88 ± 0.12	4.75 ± 0.16	97	4.25 ± 0.25	89
2014	4.93 ± 0.071	4.43 ± 0.23	90	4.14 ± 0.31	94
2015	4.65 ± 0.15	4.24 ± 0.22	91	3.76 ± 0.30	89
Total	4.82 ± 0.075	4.47 ± 0.13	93	4.05 ± 0.18	91

(Shave & Lindell 2017, Journal of Raptor Research)

Conservation: Effects of nest boxes on kestrel presence in fruit-growing region

Transect Surveys of Kestrel Presence

Kestrel Presence Increased With Boxes

Agriculture: Quantifying prey removal by kestrels using orchard nest boxes

Recording Prey Deliveries

Male Delivering Vole

Kestrels Consume Orchard Pests

Variation in Types of Prey Delivered

Variation in Types of Prey Delivered

Agriculture: Effects of nest boxes on fruit-eating bird abundances in orchards

Hypothesis

Kestrels reduce fruit-eating bird abundances by:

• Consuming birds (direct effect)

Hypothesis

Kestrels reduce fruit-eating bird abundances by:

• Acting as a cue of predation risk (indirect effect)

Prediction

Orchards with active kestrel boxes will have lower fruit-eating bird abundances than those without

Mixed Effects Modeling of Orchard Transect Counts

Small fruit-eating birds

Medium fruit-eating birds

Random effects: orchard/transect + year

	df	LRT	Ρ	
box 🛛	1	32.90	<0.0001	***
<mark>crop</mark>	1	6.74	0.009	**
perch	1	0.01	0.91	
harvest	1	0.85	0.36	
harvest^2	1	6.76	0.009	**
edge	1	2.33	0.127	

Random effects: orchard/transect + year

	df	LRT	Ρ
box	1	13.35	0.001 **
crop	1	3.70	0.054 .
perch	1	0.00	0.988
harvest	1	1.77	0.183
harvest^2	1	2.37	0.124
edge	1	0.38	0.538

Fruit-eating Bird Abundances Lower at Sites with Kestrel Boxes

Take Home Messages

High reproductive rates and tolerance of monitoring

Increased kestrel presence in region

Kestrels consume orchard pests at varying rates

Fruit-eating bird abundances lower at orchards with active nest boxes

Ongoing & Future Work

Modeling kestrel predation of rodents

Measuring rodent activity in orchards

Estimating value of orchard nest boxes using regional economic modeling

New nest boxes in blueberry fields in southwestern Michigan

Acknowledgments

Assistance with box installation and kestrel banding:

> Ben Hawes Shayna Wieferich Emily Oja Logan Clark Bobby Shave Rachael Eaton Kate Howard Melissa Brady

Photos by M. Shave, R. Eaton, C. Lindell, and S. Wieferich

Literature Cited

KROSS, S.M., J.M. TYLIANAKIS, AND X.J. NELSON. 2012. Effects of introducing threatened falcons into vineyards on abundance of passeriformes and bird damage to grapes. *Conservation Biology* 26:142-149.

SHAVE, M.E. AND C.A. LINDELL. 2017. American Kestrels occupying nest boxes in Michigan cherry orchards show high reproductive rates and tolerance of monitoring. *Journal of Raptor Research* 51:1-11.